Interaction of iron regulatory protein-1 (IRP-1) with ATP/ADP maintains a non-IRE-binding state.
نویسندگان
چکیده
In its aconitase-inactive form, IRP-1 (iron regulatory protein-1)/cytosolic aconitase binds to the IRE (iron-responsive element) of several mRNAs to effect post-transcriptional regulation. We have shown previously that IRP-1 has ATPase activity and that binding of ATP suppresses the IRP-1/IRE interaction. In the present study, we characterize the binding activity further. Binding is observed with both [alpha-32P]ATP and [alpha-32P]ADP, but not with [gamma-32P]ATP. Recombinant IRP-1 binds approximately two molecules of ATP, and positive co-operativity is observed with a Hill coefficient of 1.67+/-0.36 (EC50=44 microM) commencing at 1 microM ATP. Similar characteristics are observed with both apoprotein and the aconitase form. On binding, ATP is hydrolysed to ADP, and similar binding parameters and co-operativity are seen with ADP, suggesting that ATP hydrolysis is not rate limiting in product formation. The non-hydrolysable analogue AMP-PNP (adenosine 5'-[beta,gamma-imido]triphosphate) does not induce co-operativity. Upon incubation of IRP-1 with increasing concentrations of ATP or ADP, the protein migrates more slowly on agarose gel electrophoresis, and there is a shift in the CD spectrum. In this new state, adenosine nucleotide binding is competed for by other nucleotides (CTP, GTP and AMP-PNP), although ATP and ADP, but not the other nucleotides, partially stabilize the protein against spontaneous loss of aconitase activity when incubated at 37 degrees C. A mutant IRP-1(C437S) lacking aconitase activity shows only one ATP-binding site and lacks co-operativity. It has increased IRE-binding capacity and lower ATPase activity (Km=75+/-17 nmol/min per mg of protein) compared with the wild-type protein (Km=147+/-48 nmol/min per mg of protein). Under normal cellular conditions, it is predicted that ATP/ADP will maintain IRP-1 in a non-IRE-binding state.
منابع مشابه
Iron regulates mRNA translation initiation through RNA iron responsive element (IRE)
Iron regulates mRNA translation initiation through RNA iron responsive element (IRE) By Jia Ma Advisor: Professor Dixie J. Goss The non-coding IRE-RNA structure, a 30 nt stem loop structure, regulates synthesis of proteins in iron trafficking, cell cycling, and nervous system function. IRE-RNA binding with iron regulatory protein (IRP) proteins inhibits ribosome accessing mRNA. Increasing iron ...
متن کاملCombinatorial mRNA regulation: iron regulatory proteins and iso-iron-responsive elements (Iso-IREs).
Combinations of RNA elements (mRNA specific) with binding proteins give a wide range of responses to biological signals from iron, oxygen, NO, or growth factors. Combinatorial regulation of transcription to coordinate synthesis of groups of proteins is well known and is exemplified by steroid hormone-responsive genes (1). Combinatorial regulation of mRNA utilization to coordinate synthesis of g...
متن کاملInactivation of both RNA binding and aconitase activities of iron regulatory protein-1 by quinone-induced oxidative stress.
Iron regulatory protein-1 (IRP-1) controls the expression of several mRNAs by binding to iron-responsive elements (IREs) in their untranslated regions. In iron-replete cells, a 4Fe-4S cluster converts IRP-1 to cytoplasmic aconitase. IRE binding activity is restored by cluster loss in response to iron starvation, NO, or extracellular H2O2. Here, we study the effects of intracellular quinone-indu...
متن کاملIdentification of RNA-binding surfaces in iron regulatory protein-1.
Post-transcriptional regulation of mRNA translation and stability in iron metabolism involves the interaction between the trans-acting cytoplasmic iron regulatory proteins (IRP-1 and IRP-2) and cis-acting iron-responsive elements (IREs) in mRNA 5'- or 3'-untranslated regions. IRP-1 can adopt two conformations: one with a [4Fe-4S]-cluster, unable to bind IREs, which functions as a cytoplasmic ac...
متن کاملFe2+ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation.
Iron increases synthesis rates of proteins encoded in iron-responsive element (IRE)-mRNAs; metabolic iron ("free," "labile") is Fe(2+). The noncoding IRE-RNA structure, approximately 30 nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. IRE-RNA riboregulators bind specifically to iron-regulatory proteins (IRP) proteins, in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 430 2 شماره
صفحات -
تاریخ انتشار 2010